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I. SCOFE OF STUDY PROGRAM AND PROGRESS

A study of radio frequency interference in GSFC ground
installations has been underway at the Moore School of Electrical
Engineering of the University of Pennsylvania since June 25, 1965.

The purpose of this work was to identify the major sources of radio
interference at the GSFC stations, to analyze the severity of the
interference, and to propose methods of minimization. The output

of the study was to be a document presenting guidelines for interference
minimization suitable for use by equipment designers and.system
planners. Such a document has been completed and submitted.

Discussed in the document are: 1) mechanisms of generation of unwanted
emissions, 2) receiver susceptibility mechanisms, 3) equipment design
for interference minimization, 4) methods of interference measurement
and 5) site selection for avoiding areas of concentration of radio
sources.

During the course of this work, data on actual interference
encounters at the various ground stations were made available to us.
These data were summarized and presented as funption of time of
occurrence, place of occurrence, and type of interference for the
years 196L4-1966. A report entitled "Summary of STADAN Network
Radio Frequency Interference Events" containing the results of the data
analysis was issued early in 1967.

To a large measure the interference encountered at GSFC
satellite tracking and data acquisition stations is a result of the
simultaneous appearance of two (or more) satellites.in the field of

view of the ground station which have equal or nearly equal frequency
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assignments. This was anticipated in the early stages of the study
and borne out by the interference data. Accordingly, methods of
predicting and of minimizing such interference were studied. The
prediction studies resulted in a computer program which uses the
anticipated locations of all the satellites aloft and the electrical
parameters of the satellite transmitters to determine future inter-
ference encounters. In addition a statistical study was undertaken
which had as its purpose the development of a frequency assignment
plan which minimizes the probability of interference. The results of
the latter two studies are reported in the second interim report omn
this contract, Chapter 5, dated 30 April 1966. Since this work was'
reported, additional attention was given to this problem expanding it to
include load assignment as well as frequency assignment. Since the
continuation of this work is a major effort a brief statement of the
status of the work and the direction it might take in the future is
given in Section IT.

While mechanisms of generation of unwanted emissions and
mechanisms of entry imto receivers have received much attention in the
past the information of the effect of interference on the receiver output
is usually found to be insufficient. We have therefore given attention
to 1) the tracking errors caused by interference in the Minitrack
system, and 2) the behavior of phase locked loops subjected to inter-
ference. The first of these problems was discussed, in part, in the
second interim report on this contract, Section 3.3.2. Since the

publication of that report the work was completed and a technical report




prepared. This report is included here under Section IIT, Part 1
entitled "Tracking Errors Caused by Interference to the Minitrack
System." The problem of the phase locked loop was mentioned in
Section 3.3.1 of the second interim report but was not pursued there
in any detail. Since the publication of that report several methods
of analyzing the interference effect were studied and are presented

here under Section III, Part 2 entitled "A Study of the Phase Locked

Loop with Interference."
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ITI. STATE OF WORK UNDERWAY AND RECOMMENDATIONS FOR CONTINUATION

1. TFrequency and Load Assignment

As pointed out above, the problem of optimum fregquency
assignment has received some attention; the second interim report,
Section 5.2 contains the details of this work. A method of assignment
was outlined but the detailed procedure, which will require a computer
program, remains to be developed. Furthermore, it appears reasonable
to go a step further and to propose that the overall system be
optimized with a view to maximizing the information transfer between
satellite and ground. The study should provide a basis for

(1) locating new stations;

(2) assigning ground stations to a given satellite for
tracking and/or data collections;

(3) assignment of frequencies.
These decisions should be made subject to a number of constraints,
among which are

(1) existing ground locations;

(2) orbital elements;

(3) transmitter and receiver characteristics (power,
information rate, etc.);

(4) available bands;

(5) storage capabilities of satellites;

(6) satellite priority.
Solution of the problem depends mainly on the choice of a suitable

mathematical model for the total space-ground system.
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The model considered is a probabilistic model. Satellites
are assumed to enter and stay in the region of view of a ground station
according to a probability law. Information is transferred from a
satellite to a ground station when the former is in the region of view
of the latter and there is no interference from other satellites. 1In
case of interference a satellite, it is assumed, may be ordered to store
information until another pass at.a certain cost, depending on the
amount of information stored and on the storage time.l The cost of
the information lost depends on (a) the satellite it has been collected
by, and (b) the time at which it is supposed to be transmitted. It
is desired to minimize the average cost, where the average is taken
with respect to time, satellites and ground stations. The variables
in this problem are the parameters of the joint probability distribution

of the information transferred during successive passes.

2. Continuation of Studies of Interference Effect

Analyses of the effect of interference are often made tractable
by using convenient, but not necessarily realistic, assumptions about
the nature of the interference and the system through which it passes.
It is therefore essential that experiments be carried out to demonstrate
the validity of the analysis. In certain instances the mathematical
model is so formidable that no one cares to undertake analysis; the
only alternative is to use experiment.

Experiments can be carried out directly, or indirectly on

simulated models. The latter method has shortcomings too since it does

1 If the total information required to be stored exceeds the storage
capacity irformation will be lost and a cost is associated with the
loss.

- 5 -
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not involve the actual device, but it is a middle ground between pure
analysis and direct experiment.

We believe it will be of great value to initiate an
experimental program leading to results of output interference effect
on the various components of the STADAN system. Tracking and measurement
errors in the Minitrack system and the Range and Range-Rate system
ought to be found. Error probabilities and other measures of output
noise should be found for the data aquisition devices. The tracking

errors, acquisition time, and loss of lock in phase-locked loops

should also be found.
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ITII. TECHNICAL REPORTS

1.0 TRACKING ERRORS CAUSED BY INTERFERENCE TO THE MINITRACK SYSTEM

2.0 A STUDY OF THE PHASE LOCKED LOOP WITH INTERFERENCE



1.0 TRACKING ERRORS CAUSED BY INTERFERENCE TO THE MINTTRACK SYSTEM

1.1 Description of Minitrack System

The Minitrack system, which forms a basic part of the STADAN
network, is used to determine satellite orbits by means of a series of
independent angle measurements that are made at different ground
stations.

The Minitrack system basically consists of a radio interferometer
which has two antenna arrays orthogonally aligned along east-west and
north-south baselines. These interferometer arrays provide measurements
of the angles wl and ¢2 in Fig. 1-1. The elevation and bearing of the

satellite can then be obtained by means of the following relations:

Tan6 = cot® b+ cot? v, (1-1)

cot? ¢l

Sin“g = (1-2)

cot2 ¢l + cot2 ¢2
The interferometer array obtains a measurement of the angle
¥ by measuring the phase delay which results when the wavefront arriving
from the satellite intersects the receiving array at the angle {
(see Fig. 1-2). This phase delay is created due to the time needed
for the wavefront to progress from element x of the array to element y.

Ir A¢' represents the phase delay, then

Agr = ox 2 (1-3)

red

where 'A' is the wavelength and 'a' represents the "radio path

difference" expressed in wavelengths. From Fig. 1-2 it can be seen that

-8 -



cos ¥ = % =

Ele

Hence,

cos | = Ap: (1-4)

2m

Equation (1-4) represents the basic equation from which the angle | can
be computed.

The angular resolution of the interferometer array increases
with the distance 'd' between the elements of the array; the best
resolution is obtained for a separation of many wavelengths. In the
Minitrack system, the so-called "fine" antenna, which has an element
separation distance of n = L6 wavelengths, provides the maximum system
resolution. The maximum phase difference A@' is obtained when ¥ = 0
and a = d = n\. From (1-3) we see this to be A¢'max = 2mn. The

electrical phase measuring system will determine A¢' modulo 2rx. That

is
A¢'=2nk+¢l s k=0,1,2, ..., n =16

and the system measures ¢l’ an angle which is less than 2x in magnitude.

The corresponding value of ¥ is from (1-14)

N
'—l

+

cos ¥ =

Biw

(1-ka)

no
2
B

The component % represents the ambiguity arising in the measurement and

is resolved through the use of low resolution antennas. Two such



antenna systems are in use, a "medium" antemns in which n = 4, and a
coarse antemna in which n = 3.5. Hence, for the "medium" antenna

cos ¥ is given by (from (1-4))

cos ¥ = %g; (1-Lv)

Similarly for the "coarse" antenna,

cos § = %g;r (1-Le)

Subtracting (1-hc) from (1-Lb) gives

cos ¥ = éﬁ:.:.é@f (1-5)

LS

It is evident that (A" - AB”) will decrease monotonically from 180°
when ¢ = 0° to 0° when ¥ = 90°. Equation (1-5) gives, therefore, an
unambiguous measurement of ¥ and is used to determine the value of
% (ea. (1-4a)) in the "fine" measurement. Since % (n = 46) changes in
discrete units of ﬁg it is essential that the error in the ambiguity
resolving measurements be less than this amount if error in the
measurement of k is to be avoided. In the work to follow the view is
taken that the ambiguity channels must not have an error in the
measurement of each of the angles A@" and A¢” of more than 1°.
Continuous measurements of the three phase shifts Ag',
A", and A@” are obtained using amalog phase meters. These measurements
are periodically sampled at fixed increments of time and fed into a

digital computer.

- 10 -



1.2 Interference Effects

In recent months, a large number of incidents have been
recorded in which unwanted radio signals have caused interference to
the Minitrack system, thereby destroying the ability of a ground station
to both track a satellite and gather telemetry data from it. This
interference falls into one of two categories: a) co-channel inter-
ference originating from other satellites which are also transmitting
in the 136-138 MHz space research band and which happen to be passing
over the ground station at the same time as the desired satellite and
b) adjacent channel interference originating from aircraft transmitters
which operate in the 118-136 MHz aeronautical mobile band and which
happen to be flying in the vicinity of the ground station. The errors
created in the Minitrack system by these forms of CW interference
(CW) are analyzed in the following section. A further section (1.2.2)
is similarly devoted to the errors caused by broadband interference such
as might be created by modulated signal sources or high-voltage power
lines.

1.2.1 CW Interference

Figure 1-3 gives a simplified block diagram of the interferometer
system. The following assumptions will be made in order to simplify
the calculations which follow:
1) The IF and post-detection filters have rectangular
pass-band characteristics.
2) The angle measurements are unaffected by noise in

the measuring system.

- 11 -



If both the desired and undesired (interfering) signal are
simultaneously present, then the input to the receiver from antenna x

is given by

. V.o = Ap cos apt + A cos QDUt - E) (1-6a)

where AD = amplitude of wanted signal
AU = amplitude of unwanted signal
wb = frequency of wanted signal
wU = frequency of unwanted signal

£ = phase lag of the unwanted signal relative to the wanted
signal.

Similarly, the input signal from antenna y is given by

Viy = Aj cos Gth - ¢D) + A cos QmUt - ¢U - €) (1-4b)

where ¢D

y

interferometer phase delay for desired signal

interferometer phase delay for undesired signal.
These signals are then converted down to a lower IF frequency
in the two mixers.

For the x channel, the mixer output is:

V., = @Ay cos Ot +ah;cos (QUt - g) (1-72)

where QD and QU are the respective IF frequencies for desired and

undesired signals and & is the mixer gain (@ < 1).



The mixer output in the y channel is shifted in frequency
with respect to the x channel output by @, = 2x(100) rds/sec. Hence

the y channel output is given by:

Vo, = o Ap cos [(QD +o )t - ¢Dj+o:AU cos i(ou +0 )t - ¢ - gj
(1-7b)
Both of these signals are now combined and amplified in
the IF amplifier. If the amplifier gain is G, then the amplifier

output 1is

VIF=O£GAD{cos Qpt + cos [(QD +wo)t - ¢]J}

{ - S 4 - el
+Qa G A.U _\cos (QUt E) +cos (QU + (bo)t ¢U g ?l 8)
ir QU is outside the 10 KHz bandwidth, of the IF amplifier, then the
undesired component of VIF is eliminated, and there are consequently

no measurement errors. In this case, the input to the detector is

glven by

E, =aGAj {cos Qpt + cos [(QD + a)o)t . ¢D:H (1-9)

Assuming that the detector is a square law device, then

Hence,

=

It

B
| e

2.2, 2

o =k QTGAy {cos QDt + cos [(QD +<DO)‘C - ¢D]}2
sy {cos 20yt + 5 cos [2( 0, - 2]

]
]

+ cos [eg‘).Dt tot - ¢D]+ cos (wot - ¢D)§ (140)

- 13 -



where K = kozeG2

The detector output EB is now fed to the post-detection
filter, which is a band-pass filter centered at @ with a bandwidth
bG = 10 Hz. Such a filter is only able to pass the lowest frequency
comenent of Eo; all the other components fall well outside the pass-
band of this filter and are consequently rejected.

Hence, the output from the post-detection filter is

v, = KAD2 cos (a)ot - ¢D) (1-11)

which contains ¢D’ the unknown phase difference from which the angle
¥ is computed.

Now consider the case in which QU falls within the 10 KHz
IF bandwidth (assume also that (QU + wo) falls within the bandwidth).

In this case, E, is given by (1-8). The detector output will therefore
be:

2 2.2, 2

5 ;= ko GAD {cos QDt + cos [(% +wo)t - ¢D:] f

P

kangAue{COS (QUt - €) +cos [(QU +<Do)t - ¢U - J% ‘

%k a2G2AUAD {cos Qpt + cos [(QD + wo)t - ¢D]}{cos (QUt - £)
+ cos [(QU o)t - gy - ]} (1-12) ‘

As before, the post-detection filter will only pass the

(53]
Il
b
=
l

2

-+

-+

low frequency components. Hence, if eg. (1-12) is expanded and all

frequency components containi and are eliminated, we are left with:
ng

- 14 -




V, =K AZ cos (@t - #.) + K &7 cos @t - ¢,)
+ K AA, {cos (At - €) + cos [kA + wo)t - ¢U - s]
+ cos [(I AF wo)‘t + ¢D - §:| + cos [At + ¢D - ¢U - §]} (1-13)

where A = (£ Oy F o)

The first two terms in expression (1-13) for Vu contain only
the frequency wo, so that these terms always appear at the output
of the post-detection filter. The remaining four terms, however,
contain signal components with frequencies 4, A + wo and + A Icuo.
Whether or not these components appear at the filter output, depends
on the value of the difference frequency 4 relative to the filter
bandwidth B = 2xb.

In Fig. 1-L4, these three spectral components are shown for
six different values of A. The six different spectra of Fig. 1-L will
now‘be grouped into four categories and the error in phase difference
will be separately computed for each of the four cases.

Case A

In this particular case, none of the three spectral components
fall within the filter pass-band. Using Fig. 1-4, this case corresponds
to spectrum Nos. 2, 4, and 6.

Hence, in case A, the last four terms of Vu do not appear,

so that V, 1s defined only by the first and second terms of (1-12); i.e.,

vuA =K AD2 {cos (cnot - ¢D) + X (a)ot - ¢U)} (1-1k)

- 15 -



where X = =—

Figure 1-5a represents a phasor diagram in which Vu is represented by
two phasors rotating at frequency wo. OA and OC represent the desired
and undesired components of Vﬁ, while OB represents the resultant
signal which appears at the filter output. The angle € represents the
phase error caused by the undesired signal OA. From Fig. 1-5a it is

immediately apparent that

sin ¢D + X2 sin ¢U

tan(@y +¢,) = R a—— (1-15)
D cos @y
Hence,
tan @ + tan e sin @_ + X sin 0]
D A D U
tan(¢D * €A) T I-tan g tan e, - 2 (1-16)
D A cos ¢D + X~ cos ¢U
Solving for tan GA gives
2 . '
tan e, = X sin ¢ (1-17)

1+ X2 cos @'

where @' = ¢U - ¢D
Equation (1-16) therefore defines the error ¢, for case A.

Figures 1-6 and 1-7 show curves of the error €p plotted against
X (in ab) for different values of @1,

If X is small (case where Ay >> Au)’ then the resulting error

€, Will be small. Consequently, (1-17) reduces to

- 16 -



-1 %2 sin gr

e, = tan 5 ~ %% sin @ (1-172)
1 +X cos ¢

It was pointed out above that an angular error of 1° is to
be viewed as the tolerable maximum in the ambiguity channels. This
implies a large signal-to-noise ratio Q%) in (1-17) and one for which
the approximation used is valid. Furthermore, @' will take on many
different values during a pass so that it would be reasonable to assure

that in the worst case eA should not exceed the tolerable maximum.

Since

~ R
°A max -
we conclude that the signal-to-interference ratio should be equal to

or greater than 17.6 db to hold € . bo less than 1°,

A ma

Case B
This case corresponds to spectrum No. 1 of Fig. 1l-4, in

which both the (wo - A) and (‘Do + A) components are present at the filter

output. The total output is now given by

2 2
VuB = KAy {Fos Qbot - ¢D) + X" cos @bot - ¢U)

+ X cos {}wo + At - ¢U - gj]+ X cos [}wo - A)t + ¢D - é}} (1-18)
Case B is vectorially represented in Fig. 1-5b. The lower left half of

the diagram is the same as that shown in Fig. 1-5a and corresponds to

the first two terms of (1-18). The upper right half of the diagram represents

- 17 -
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the two additional components; phasor BF rotates clockwise with a
frequency A, while phasor BD rotates anticlockwise with the same
frequency. Since the magnitudes of RF and ED are the same, the

resultant BE does not rotate but points continuously in the same

it Y g
direction; that is at an angle — = E + 5 with respect to the

horizontal phase reference. Phasor OE represents the combined output
signal and GB(t) represents the resulting phase error for case B. As
phasors BD and BF rotate about B, the point E moves along the line

BEG and passes through B (at the two extremities, the point E is at a
distance of 2X on either side of B). The error €B(t) therefore changes
periodically with time. An expression for eB(t) will now be obtained.

From Fig. 1-5b, it can be seen that

tan ¢D +tan e,
1 - tan ¢b tan ¢

tan{;¢D + €B(t)] =

2
sin @ + X" sin @¢_ + X(sin ¢, + sin ¥ )
_ D u 1 2 (1-19)
cos ¢D.+ X~ cos ¢U + X(cos ¢l + cos ¢2)

where
¥,(6) = (g - iy + Bt)
b,(t) = (g + ¢y - bt)

Evaluating tan eB(t) gives

X° sin @' + 2X sin (g + %} - ¢D) cos (At - %)

tan €B(t) = 5{1-20)

1 +X° cos @' + 2X cos (E + %; - ¢D) cos (At - 5)

- 18 -



where @' = ¢U - ¢D and ¢ = ¢U + ﬁD

The maximum error is obtained when E is at one of its

extremities, i.e., either when (At - g) = 0, or n. Hence, the maximum

error is given by

1 X2 sih gt + 2X sin (g + %} - ¢D)

|
N -
€ (t ) = ’ tan T
B § 1 +%° cos g £ 2X cos (g + %7 - ¢D)
where the maximum is the larger of the two values taken on by eB(t).

It can be anticipated that X << 1 and that
H 1
e (t) = 2x  sin (g + %? - ¢D)l (1-21)

Furthermore, as the satellite progresses through its orbit, the angle

in (1-21) will very likely pass through -1/2 or n/2. Thus

If the latter is to be less than 1° then the signal-to-interference
ratio, %, has to be L41.2 db.

This estimate of the signal-to-interference ratio takes the
pessimistic view that everything will be at its worst. The measurements
are repeated every second and successive measurements are averaged in
a computer so that it is unlikely that each sample entering into the
average will be taken exactly when E in the Fig. 1-5b is at its
extremity. It would be more appropriate to treat the angle (At - g)

in (1-20) as a random variable uniformly distributed in 2n and tc derive

- 19 -



a suitable statistical conclusion. Again, for X << 1, we write in

place of (1-20)
eB(t) = 2X sin (g + %% - ¢D) cos (At - %) (1-22)

Written in this manner, the time average of GB(t) over a cycle is
zero. This is only approximately correct; it can be shown that the

time average of (1-20) is not zero (it differs, also, from €, defined

A
in (1-17a) and shown in Fig. 1-5b).

Now, the final computed output angle is obtained by using
145 "fine channel" measurements and 29 "ambiguity channel" measurements
taken over a 29-second period. We have argued that lO error in the
ambiguity channel establishes the tolerable input interference level.
Therefore, we compute the angular error for the ambiguity channel
taking into account the averaging over 29 successive measurements
each given by (1-22).

The error criterion is here treated as follows. Each
measurement of GB(t) will depend on (&t - g) which we are treating as

a uniform random variable. The variance of eb(t) is therefore fram (1-22)

oei = ¥° sin° (g +% - ¢D) (1-23)

Now, we view the n = 29 successive measurements as independent samples

which are averaged to give E;. The variance of this latter quantity is

2 1
ol X sin® (g +%— - 8,) (1-24)

[

o’
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1
Assuming we are at a part of the orbit where £ + %? - ¢D =k g, k odd,
the variance will be maximum. We write it then
g = %& (1-2ka)
rll ¥al
- b max
Finally, we let the permissible angular error of lo, equal
1 —
20 . Since €B will be approximately normally distributed this
€ max ‘
meang that there will be about 5% probability that !Eg f> lo. Thus,
x 2B .oy | =22 (19
2 P 2
Loey
- b “max
and

X =-26.74dp

For this case, then, it is advisable to have a signal-to-noise ratio
of about 9 db greater than in the previous case. It should be recalled
that the case treated is one in which the desired and undesired signal

frequencies are separated by an amount less than the post-detection
filter bandwidth of about 10 Hz.

Case C

This case corresponds to spectrum No. 3 of Fig. 1-4 in
which the signal components of frequency A are present at the filter

output. The total output for this case is therefore given by
V. =K AD2 ?cos wt-@)+ X2 cos @t - ¢)
u, ) o] D o] U

+X cos (At - g) +X cos (&t - ¢@* - E)} (1-25)
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The phasor diagram for Case C is shown in Fig. 1-5¢. 1In
this case, BD and BF are both rotating in the same direction at a
frequency (A - wo). The resultant BE therefore also rotates about B
at the same frequency. Consequently, the error €C(t) varies periodically
with €A as its mean value. An expression for €C(t) can be obtained in

the same way as in the last case. The result is

X2 sin @' - 2X cos % sin -_(A - wo)t -8 - %—' - ¢D“

1+ X cos ¢'+2Xcos%—'cos. (A—wo)t-g-%-QSD‘

tan €c(t) =

(1- 26)
The maximum error is obtained when BE is normal to OB for the

situation shown in Fig. 1-5¢

g 7t
b)) +5 =¢, +3 (1-27)
Substituting for 4:1(1:) and solving for "t" gives
)
s+ % "3
‘t = A Y (l- 28)
o

Substituting (1£8) into (1.26) gives the maximum error for Case C:
2 . gr . fis
X° sin ¢' + 2X cos 5 sin (¢D +e, + 2)

1+ % cos ¢'+2Xcosgcos (¢D+e

tan éc(t) = (1- 29)

T
A*3)
Conclusions similar to those obtained in Case B can be drawn
for Case C. For X << 1 (1-29) can be approximated by
t
éc(t) = 2X cos g sin (¢D +e, +=

2 A§)
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The maximum value of the magnitude of Gc(t) is

o

max

R

If féc(t)J is to be limited to 1° the value of X is, as in Case B,

41.2 gp, "X

Returning to (1-26), for X << 1

. Q’_ » ‘,( ﬁ )
ec(t) = - X cos %5~ sin 1(A - wo)t -g -5 - ¢D)>

As in Case B, treating the angle in the braces as a random variable
uniformly distributed in 2x, the maximum value of the variance of the

average of n samples of ec(t) is

o—1 =X
€ J T /m
c
max
The signal-to-noise ratio required to keep 2[? E—-]< 1° is 26.7 db.
c
Case D
This final case corresponds to Spectrum No. 5 of Fig. 1-4,

in which the component of frequency (A - wo) is present at the filter

output. The total output is now given by
2 2
VﬁD = K Aj {cos @Dot - ¢D) + X cos (wot - ¢U)

+ X cos [(A - a)o)t + ¢D - g] : (1-30)
The phasor diagram for Case D is shown in Fig. 1-54. Phasor

BE rotates about B at a frequency (A - 2 wo) and the resulting error is

now eD(t) which again varies periodically about ¢, &s its mean value.
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An expression for eD(t) can again be obtained as before:

x> sin § - X sin ¢D - X sin [(A - awo)t + 2¢D - 51

tan eD(t) = 5 -
L + X cos ¢' + X cos ¢D + X cos [(A - abo)t + 2¢D - g

(1-31)
The maximum error is again obtained when BE is normal to

OB. For the situation shown in Fig. 1-5d this implies

7T
t(t) = €y t5

or when
7t
E-f -¢, -3
D A 2
t 5 (1-32)
)
Substituting (1-32) in (1-31) gives the maximum error for
Case D:
2 . . . b
X" sin @' - X sin @ +X sin (¢, +Z - @)
‘ D A 2 D
tan eD(t) = (1-33)

2 T
1 +X cos §* +X cos ¢D + X cos (e, + 3 - ¢D)

Once again for X <« 1

A o T, 7T . 1
€D(t) = X [?1n (GA +5 - QD) - sin ¢D.j
Recognizing that €y << g
Lo . [_ = o ]
eD(t) = X | cos QD sin QUJ

The maximum value here is
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[%(t)] = \Z X

max

To hold [6 d(t):] to 1° requires that X be about 38 db. Now using
max

X << 1 with (1-31)
ey(t) = - X {sin 8y - Sin[ (A -20)t +2¢ - 51}

In this case averaging n = 29 successive samples will reduce the effect
of the second sine term in the braces but not the first. We take the

view then that the error in this case is

€D(t) = X sin ¢D

At the point in the orbit where ¢D = (2k + l)ﬂ/E, k an integer,

le
>~

ep(t) =

and the required signal-to-noise ratio to hold €D(t) to within 1° is

about 35 db.

1.2.2 Broadband Interference

A few cases have been recorded in which broadband interference
from unwanted information bearing signal sources or high voltage power
lines has temporarily disrupted the operation of the Minitrack system.
It is therefore worth analyzing the effect of broadband noise on the
system.

Let the broadband noise be given by the real part of:
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)
3 {a)l_t + e(t)}
AU(t) e

(1-34)

Then, as before, the signal arriving from antenna X is given by the

real part of

jo_t jgw t + e(tﬂ

Ve =Age D Ayl DT (1-35)

and the signal arriving from antenna Y is given by the real part of:

)

Jo (t - 1) Jo (b - 1) jo(t - T
D D D v’ (1-358)

Viy = ADe + AU(t - TU)e

where ™ and Ty represent the time delays necessary for the desired
and undesired waves to travel from antenna X to antemna Y (time required

to cover distance "a" in Fig. 1-2).

Similarly, the two outputs from the mixer are given by the

real parts of

[ '§ t e(tﬁ
Vox(t) = ADeJQD +Q AU(t)eJ\QD : ’ (1-36)

. .
() =’ T

3oy +o )t - 7y) 30t - Ty)

+a Ayt - Tye (1- 36a)

In practice, the time delay T . does not exceed 0.5 psec, so that the

U

change of A(t) and 6(t) during the time T may be neglected. Hence,

U
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Ayt = 1) = a (&)

and

6(t - TU) ~ 6(t)

The two output signals are combined and amplified in the IF
amplifier. If the time response of the IF amplifier circuit is given
by

Jant
Gh(tde 2

then the amplifier output is given by the real part of

e Jop(t - %)
E(t) =aq | Vo(t')h(t-t')e at' (1-37)
o
- OO
where
1) _— 1 '
Vo(t ) Vox(t ) +voy(t )
Hence,
ja e (61 o (v - T)
B,(t) =aGe Ay +! AU(t')eJ h(t - t')at’ + Age
- OO
+ o
o (t -71.) o(ery ~do (t - t)
+e ° ’ J ‘L\U(t')e‘]e(t Je 0 h(t - t')aty
S ;
(1- 38)
( Th§ two integrals in (1-38) differ only by the term
~jo (t - ¢!
e ° . Since wo is very small compared with the IF bandwidth B,

this term is approximately unity, so that the two integrals are identical.
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Let these integrals be represented by I(t). Then the amplifier output

is given by the real part of

Ot Jlot - g : Jlot - ¢ ).
E.(t)No:GeD[AD{l+e © D?+I(t)51+e ° v
i y y .
(1-39)
where
¢D - Qmo * QD)TD and ¢U - (wo * QD)Tu
The output from the detector is given by
| 2 %
Eo(t) =k iEi(t) ;= k B, E (1-40)

Substitute (1-39) into (1-40) and simplify. Passing the detector output
through the post-detection filter will eliminate all components in

QD. Hence, there remains

, . 2
2 i !
e,:.l + cos(wot - ¢D) + K I(t)! 1+ cos(wot - ¢U)'

Eo(t) = KAy
+ K A Re [I(t)}iicos(wbt - ¢D) + cos@not - ¢U) + 1 + cos ¢'?

K Ap Im ;rl(t)] .‘sin(a)ot - ¢D) - sin(a)ot - ¢U) + sin ¢'i
B (1-141)

where K =Xk a2 G? and gr = ¢U - ¢D

The first term in (1-41) contains the desired signal
component plus a de¢ component which will be rejected in the post-
detection filter. The remaining terms in (1-41) are interference

generated. Because the post-detection filter has a very narrow
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A}

bandwidth much of the interference output is negligible with the
exception of a portion of the term.lIE(t)l cos Qbot - ¢u). If
I(t) is white Gaussian noise in a limited band with total pover P,
then !Ig(t) 'has & power spectrum which is an impulse function at

zero frequency and a triangular function extending from zero frequency
to twice the band of I(t). The dispersed power in the triangub r
function contributes little in the narrow post-detection filter. The
impulse function is a concentration of power (it contains % the power

in I2(t)) and makes the major contribution. We can therefore say that

at the post-detection filter dutput the major noise contribution is

given by fIg(t)g cos @bot - ¢u) where (ig(t)? is the average value of
the square of the noise output of the IF amplifier and is given by
EPI.

We can also argue that the last two terms in (1-41), which
are continuous spectrum components, make contributions at the post-
detection filter output of the same order as does the triangular
component of IIg(t)% and are also negligible. Furthermore, the
contribution to the angular error resulting from all the continuous
spectrum components in (1-41) is time-varying and will be reduced in
the computer processing. It will be recalled that the computer averages
29 successive measurements in the ambiguity channel thus reducing

the rms value of the time varying components by an additional factor

of 429. Hence, the final filter output is approximately

3
B (t) =k &2 loos (ut - §) + % cos (ot - fy). (1-42)
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where

w2 -

J |5

The expression for Eo(t) now agrees with (1-14) for the CW interference
case. Hence, the expression obtained for the error created by the

noise will be the same as that obtained in Case A of the CW interference
analysis, i.e.,
X2 sin @'

tan € = (1-43)
1+ X° cos g

Hence, the curves of Figs. 1-6 and 1-7 are also applicable
to the case of broadband noise. We conclude as we did in the discussion
following (1-17a) that to have an error of less than 1° in the ambiguity
channels necessitates a signal-to-noise ratio at the IF amplifier
output of 17.6 db or more.
1.3 Conclusions

The foregoing study of the effects of CW and wideband inter-
ference to the Minitrack system has resulted in a number of expressions
giving the angular measurement error as a function of signal-to-
interference ratio and other pertinent quantities. Several significantly
different caseg were distinguished for CW interference. The most
common case (Case A) is one in which the interference will appear in
the IF amplifier band but is neither too close to the desired signal
frequency (that is, it is separated from the desired signal by more
than the post-detection filter bandwidth), nor do its cross products

with the desired signal appear in the post-detection filter. The
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other cases arise when one of these stipulations do not hold. Three
such distinguishable situations (Cases B, C, D) can arise, but they
are much less likely to occur than Case A.

The view is taken in this work that the Minitrack system
has a threshold determined by the ambiguity resolving portion of the
system. A safe condition was taken to be that condition wherein the
electrical angles measured in the ambiguity channels is not in error
by more than lo. On this basis it was concluded that the required
signal-to-noise ratio for CW interference in Case A and for broadband
interference is 17.6 db. For the other three CW cases, the signal-to-

interference ratio required may be as high as 35 db.
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2.0 A STUDY OF THE PHASE LOCKED LOOP WITH INTERFERENCE

2.1 Introduction

The phase locked loop is an important element in modern
communication systems, and has been given much study in the past
ten years. Much of this work has been devoted to the acquisition
and tracking properties in the presence of noise. Very little work
has been devoted to the analysis of the phase locked loop in the
presence of interference from cther communication signal sources.

The behavior of the phase locked loop with interference
present is an important practical matter. In many actual situations,
interference has caused the loop to lose track, track the interfering
signal, or fluctuate in such & manner as to obscure or completely
destroy the information being transmitted.

A study of the operation of the phase locked loop in the
presence of interference should attempt to answer the questions;
under what conditions will the interference disrupt the tracking
procedure to such a degree as to cause a loss of information, and
what can be done to reduce the effect of the interference.

The answer to the first question is obscured by the fact that
different amounts of disturbance can be tolerated depending on the
specific use of the phase locked loop. It is the aim of this paper
to develop techniques of analysis for use with the phase locked loop
in the presence of interference. Expressions for the output phase
fluctuations caused by an interfering carrier and the effect of the

interfering carrier on pull-in range.and acquisition time are sought.
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The following three approaches are used: an infinite series solution
to the linearized loop equatian, a quasi stationary approach, and a

phase plane approach.

2.2 The Phase Locked Loop with Interference--An Infinite Series Approach

The differential equation for the phase locked loop (PLL)
preceded by a limiter for the case of an ummodulated carrier plus an
unmodulated interference at the input yields an unwieldy nonlinear
differential equation. But by assuming the effect of the interference
to be small a series solution for the output phase can be obtained
and from this, insight into the loop operation with interference present
can be obtained. The model for the phase locked loop is given in
Fig. 2-1.

The effect of the limiter is easily seen by rewriting the

signal at point 1.

cos wt +a cos (W +08)t =

1 a sin 6t
1l +a cos &t

';l + 8% + 2a cos 6t cos {wt + tan~ (2-1)
The limiter removes the amplitude variations. Therefore,

the signal at point 2 is

1 a sin 6t )

cos @ = cos (Wt + tan T+ 5 oo 5%

(2-2)

The voltage at point 3 is filtered and passed through the

voltage controlled oscillator (VCO) to give the voltage at point L
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which, using operational notation, is
-2 sin @bot + Egégl sin @)

But the product of the voltages at points 2 and 4 gives the voltage

at point 3
cos @ (-2 sin(wot + KE(8) sin @)) = sin ¢ (2-3)

S

This leads to
sin(@ - ot - Es(ﬂ sin @) = sin @

where the double frequency term is taken to be outside the bandwidth

of the system. Equating the angles we get
SP + KF(S) sin ¢ = S@ - S @ t (2-4)

Substituting for @ from (2-2) and defining

1 a sin 6t

6 = tan 1 +a cos 0t

we obtain

S¢ + KF(S) sin¢=m-a>o+é (2-5)
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0 can be expanded in an infinite series to givel

[++]

6 =58 Z -1+ L 4% cos not (a < 1) (2-6)
n=1

Assume ¢ has the form of a constant term plus a fluctuating

term.

B=9 +1(t) (2-7)

Then using (2-5) and (2-6)

S¢ + Kr(S) (sin ¢o cos ¥ + cos ¢0 sin §) =

<

52 (-l)n+l a” cos nét O - (2-8)

n=1

Assuming the fluctuations about the dc value of the phase error are

small then

¢ +KP(S) (sin g, +cos §_¥) =

[oo]

sz LY a® cos nst + o - w (2- 9)
1

For the case of the first-order loop F(S) = 1.

Assuming an infinite series for the output phase

fluctuations
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<]

¢ =z A, cos (ndt +q ) (2- 10)
n=1

and substituting into the differential equation yields (see Appendix A

for details)

_n6

-1
O!n = tan K_Cw; (2- ll)

and
( l)n + 1 6 n

K cos ¢ \/ K cos §_

A
n

where

(2-12)

¢o is the solution for no interference present. The

complete solution for ¢ is

[oo]
(1)n+lan 1 _-m

¢ = ¢ + 8 ZJ «ik — ¢ ) e 5) cos (nét + tan RTEEE_?Z

¢ :: (_l)n +1 n ( ¢
= + § X cos cos nét
© ZJ (n6)2 + K cos® ©
n=1
+ né sin nét) (2-13)

Note that the output phase for the first order loop with low levels of

interference is a periodic fluctuation of zero average value about the
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phase error that would be present if there were no interference. Also,
note that, if the assumption that the fluctuations due to the interference
are small, were not made, the average effect of the interference would
not be expected to be zero since the nonlinear sine function would
weight positive and negative fluctuations unevenly.

To examine the limiting behavior for very large § the

following approximation is made

1 .1
(n6)2 + K2 cos> ¢0 (né)2

(2- 14)

for

6% >> (X cos ¢O)2
which upon substitution into the solution for ¢ (eq. (2- 13) and by
noting that

0 = Z:(-l)n +1 %T sin nét (2- 15)

ZJ( ) Rl l-—é— cos nét

5

fedt

ylelds

¢ = ¢o + 8 - K cos ¢o I 6 dt (6 >> K cos ¢ ) (2- 16)

To compare the fluctuations due to the interference before and after

the phase lock loop, examine
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[¢ ~ ¢o] peak

epeak
r¢ - ¢ ] = 55 : TG o cos (nﬁt + tan T ——529—6—1
= ©Jpeak T M&né)e + (K cos ¢0)2 L K cos ¢

—Upeak

if a << 1, the first term dominates

—

$- 4]

. a b
“eak \ké)g + (K cos ¢O)2

Teking only the first term in (2-15) for 6,

o

- ]peak =a

#-4]

peak _ 6 1

— = (2-17)
[QJpeak MQ;)E + (K cos ¢0)2 NJi . (K cos ¢0)2

Note that the phase locked loop always decreases the peak-to-peak
fluctuations when a << 1. Also note that as 6 gets large the effective-
ness of the PLL dimishes as far as reducing the peak-to-peak fluctuations

of the interference.

To compare the mean square fluctuation caused by the inter-

ference before and after the PLL, compute
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21 21

L 6_2tdt=l Téﬁ )? et o
J v 2 2“ (X cos ¢o) + (nd) (not

a
Q&—>

2 2n

@ 6% g
+ tan™l 2By ° at =y 2 (2-18)
K cos 4, % (K cos §_)° + (nd)°
If a << 1, the first term dominates
52 a2

2
(K cos ¢O)2 + 52

I}

2n
> 4:5 E(t) at (2-19)

2x
§

The mean square fluctuation before entering the phase locked loop is

, &n 2
P 8 — n 2
ZE_‘ 92dt=—6—f : (—l)n+li—sinn5t
6 6 25 0 L n
1
-
n
=Z & _ (2-20)
2n2
1
If a << 1, the first term dominates
2n
06 2
& 2 _a _
= j 6% dat = 3 (2-21)
0
Therefore, the ratio is
Z a“2n 62
2 2 2
+ (né
mean square Y(t) _ 1 (K cos ¢o) (ns) (2-22)
mean square 6(t) 5
- a
L
1



This ratio is less than one regardless of the values of a
and 6. That is, the PLL always reduces the mean square phase
fluctuation caused by the interference and this effect diminishes for

larger 6. For a <« 1

mean square Y(t) _ 62
mean square 6(t) 52 + (K cos ¢ )2
o

(2-23)

Let us return to the differential equation (2-4) to

examine the behavior of the second order loop with interference.

SP + KF(S) sin @ = Se - o (2-14)

For the second order loop let

F(S) =1 +

wmwlA

which when substituted into (2-)+) and the equation is simplified yields
82¢+KS sin @ + Kr sin¢=82®-Sa)o (2-24)
Eliminating the operational notation gives
.52.5 + K@ cos § + Kt sin ¢ = @ (2-25)
letting @ = wt + 6 finally yields

.Q.S + K¢ cos § + Kr sin § = 9 (2-26)

If we precede as before and let @(t) = ¢o + ¥(t), expand

sin @ and cos @ and then let cos ¥(t) = 1 and sin ¥(t) 2 ¥(t), we
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find we cannot solve the equations. If, however, we make the cruder

approximation that cos @ = 1 and sin § = @, we can precede to solve

the equation. This approximation is not as crude as 1t appears since,
when the second order loop is in phase lock, the phase error is zero.
Therefore, the approximation is that the fluctuations about the phase
error that exists when no interference is present, are small. This
1s the same approximation we made for the first order loop.

Therefore, we make the approximation cos ¢ = 1 and

sin § = ¢, then equation 2-26 becomes

b+ Kj + kg = 6 (2-27)

As before, we represent the input phase, 0, by an infinite

series, equation 2-15. Differentiating twice yields,

=]

52 E: (-1)® n a® sin nét (2-28)

n=1

0 =

We assume a solution of the form

o]

@ = ¢0 + z A sin (nst + an) (2-29)
n=1

Substituting (2-29) into (2-27) and solving for A and o yields

(see Appendix B for details)
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-1 Kng
(2-30)
n n262 - KT

A - (_l)n + 1 n62an

The output phase is then

@

n+1l 2 n
- - 8 -
¢= 2 (;) 22‘ 2 sin éét +tanl 2K1215 >
ool Nané) + (n78% - Kr) n“8~ - Kr

.
(-1)* L g " {sin nét(ngé2 - KT) + cos nét(KnGﬁ
(nK5)2 + (n252 _ KT)2

(2-31)

1t
1 8

For the second order PLL, the output phase is again a
periodic fluctuation of zero average value about the value of the
phése error that would be present if there were no interference.

In the case of the second order loop we might still
expect the average value of the output phase to be zero even if we
had not approximated cos § = 1 and sin § = @, since for the second
order loop the steady state phase error with no interference present,
¢o’ is zero.

¢ 82 >> Kt and 8° >> K?, then

n+1 n
A = i:l) a
n n

- 50 -




and

Oﬂn = ’can_l —é—-ggé—— = tan-l _K;_l_&é = tan-l(O) =0
n 6~ - Kt n§
then
® n+1l
T (1) a” _
@ Z' ~ sin nét = 6
n=1
that is
g =0 for 6° >> KT (2-32)
82 > K

Returning for a moment to the solution to the first order

loop, equation (2-13), we have

(_l)n + 1 a‘n

(né)2 + K cos® ¢o

p=g,v07

{K cos ¢0 cos nt + nd sin nﬁt}

1
(2-13)
It 62 >> K
: n+l_n
po,+ ) (1) ~ sin nét
1
é¢o + 6 (2-33)

We see that for 62 >> K, the phase fluctuations of the first
order loop and the second order loop are identical. This is an

important result which will be arrived at from another viewpoint later.
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To examine the ratio ¢peak : epeak for the second order loop,

we assume a << l. Then the first term of the series solutions (2-31)

and (2-15) will dominate. Then

§° a
¢peak _ [:(Ké)2 +162 - K'r)g:]lﬁ %
a

peak TAK)E + (60 - k)2

(2-34)

If 8 is very large this ratio approaches one., If § is very
small the ratio approaches zero.

This ratio is greater than one if (27 - K)é2 > Kre.
If K > 21 this will never happen.

The mean square output phase fluctuation is

2n

ad ® o k op
ox =3 ). 5, 5.2 5
T O 7 (nK8)™ + (078" - kr)

Forming the ratio mean square ¢: mean square 6 we have

- 2 6h 2n
zz 2
(nk6)2 + (0262 - Kr)2
mean square § _ 1 (2- 36)
mean square 6 > 5
z: a
2
1 2n
if a << 1 the first terms dominate and we have
L
mean square § 6 (2-37)

mean square 6 KK6)2 + (62 _ KT)2]
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For large & this ratio approaches one and for small § this
ratio approaches zero. As for (2-3%4) this ratio is greater than one,
if

(ot - K)62 > K1°

For the second order loop it has been shown that for large
8§ the output phase fluctuations are approximately the input phase
fluctuations. It has also been shown that for large & the secord
order loop output is the same as the first order loop output when
carrier plus interference are present at the input. It was also
demonstrated that if X < 27, it is possible that the peak-to-peak
output phase fluctuations are greater than the input peak-to-peak phase
fluctuations in the second order loop. Similarly, the mean square phase
fluctuations of the output can be greater than those of the input in
the second order loob. This contrasts with the case for the first order
lobp where the peak-to-peak and mean square output phase fluctuations

are always less than those of the input.
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2.3 The Effect of Interference on the Acquisition Time and Pull-in.
Range of the Phase Locked Loop--A Quasi-Stationary Approach

There have been many studies completed considering the
acquisition behavior of phase locked loops with no interference
present. 1In this section one of these approaches will be briefly
reviewed. Then several cases of acquisition in the presence of
interference will be reduced to the case of acquisition without
interference and the effects of the interference pointed out.

The approach we are going to follow is that of Méerg.
Meer's approach is to demonstrate that for large frequency errors the
second order loop can be considered as a first order loop with a
slowly varying bias. With this approximation an expression for
acquisition time is developed from which he deduces the pull-in range.
Briefly, his approach is as follows:

The first order loop equation is

SP + mK sin § = Ao (2-38)

where Aw =w - ®_ is the initial frequency error.
K is the loop gain
m = éiﬁ F(S) is the high frequency (HF) gain of the filter

H

mK is the HF loop gain

Po =T is the normalized initial frequency error.

For the first order loops (2-38) has two solutions. For

|dw] < H
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-1 . ¢o ¢s > ¢o
2 tan (sm ¢s - tan ?] tanh (t cos = )+ cos ¢s tan =

7 5.
[l - sin ¢S tan —QQJ tanh(t cos ?S-)+ cos ¢s

(2-39)

where ¢s is the steady state error

#(t) was plotted for several values of initial phase, 5250, and it was

found that @(t) settles to ¢s in less than %{9 sec in most cases.

Outside the synchronization range, Ow > H, the solution is

wP # [1 i - >J¢ oot
Naw)® - ¥ y

0

From this a plot of sin ¢(t) is made and is found to be periodic, with

period

21

To = 4/(&0)2 > (2-41)

From equation (2-38) the average value of sin ¢ over a period of length,

To’ is

T

(o]
A | R Sy At (2-)2)

where
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T
0

g[¢(t)] o [ ) e

Next the second order loop is considered. Tt is given by

~ l +Tls ~ l - 1\42 ~ ~
F,(8) = = Mt T s N, + G(8) (2-43)
L +T1.8 i
where
w4 1 T(s) 8 -
M2 B Ts 2 2 T 1+ TiS

AMZ is the high frequency gain and ’G’g (8) is a low pass filter.

Using this expression for the second order loop filter the

second order loop differential equation is

S¢ + H, sin § = ko - G, (s) K, sin ¢ (2-bk)

where 1-12 = ﬁz 'I\{'g

If we define | a)i(t) = Ao - EE(S) fe sin ¢ (2-15)

then (2-44) becomes
S + H, sin § =wi(t)

Next Meer argues that for large initial Aw the filter
capacitor is a short. Recall that the second order loop filter is

given by Fig. 2-2, where
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_ 1 + MRCS
GE(S) - 1 +RCS
lim
S G(8) = M
Gé(O) =1

If the filter capacitor is a short, then the phase detector
output is that of a first order loop. Therefore, from the earlier
analysis of the first order loop, there is initially a low frequency
component out of the phase detector given by (2-42) with period given
by (2-&1). Along with this low frequency component are components at
the fundamental and harmonics of the beat frequency, Sﬂ . But only the

low frequency component gets through the filter G (S), ergo

. T
—0
| Eé(s) sin @(t) = G,(s) sin §(t) (2-46)
and r
®;(t) £ Mo - Ké G,(8) sin g(t) (2-47)

Meer then proceeds to demonstrate that as long as
1.8 B < ®; vhere B 1is the noise bandwidth wi(t) is a slowly varying
term and under these conditions, the second order loop can be treated
as a first order loop with a slowly changing bias.

With this point established

S¢ + H, sin § = w, (t

is treated as a first order loop equation with an initial frequency
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error wi(t), Then at any instant the low frequency component of the

phase detector output is

T
) @5
sin § = T - (2-48)

where T is

%; = ﬂ/wi2 - ® (2-49)

Substituting (2-48) into (2-45) yields

o; = Mo - G (s) R‘[—bHi - \/(%5 -1 (2-50)

@, (t) Ao
If we define p(t) = i and p(0) = P, =3 and substitute
for Eé(s) and separate variables, we get,
at dp (2-51)
T. =
t 1-M 5
P =Pt —— (NP -1 -p)
M

Integration of (2-51) between the limits po and the
minimim value of P for which the quasi-static condition is satisfied
gives a part of the total acquisition time.

This portion is called the frequency acquisition time, tf.
The remaining time to acquisition is called the phase acquisition time

t¢. The total acquisition time, ta, is then

ta=t¢+tf
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Meer then justifies using p = 1 as the upper limit of integration
for eq. (2-51) and accepting t¢ < %? as a bound for t¢.

The solution of eq. 51) from p = P, to p =11is given
by Richman3 and is presented graphically by Meer.

The pull-in limit, the value of P for which the acquisition
time goes to infinity, is obtained by finding the real zeroes of the

denominator of eq. (2-51) which yields

v =H \/gg - 1
P VH
which depends only on the dec gain X and the high frequency gain H.

At this point, we have presented the results of Meer's
investigation of the acquisition behavior of phase locked loops with
no interference present. We have found the acquisition time to be a
function of initial frequency error, dc loop gain and the HF gain of
thé circuit and we have found the pull-in range as a function of the
dc loop gain and the HF gain of the circuit. In light of these
results, we proceed to examine the behavior of the phase locked loop
in the presence of interference.

Returning to the model of the PLL it is of interest to
examine the spectrum of the signal after it has passed through the
limiter but before it has entered the feedback loop. The model for
the loop is shown in Fig. 2-3. TFor simplicity we assume that
initially the frequency out of the VCO is zero. Therefore, Aw

represents the initial frequency deviation
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cos ot + a cos (Ao + 6)t = A(t) cos (Mwt + o(t)) (2-53)

a<l

where

-1 a sin §t

6 = tan 1 +a cos §t

and

A(t) ==\h +a° + 2a cos &t

The amplitude variations are lost in the limiter. The
frequency spectrum at the output of the ideal limiter can be found
by expanding cos [Awt + e(t)].

=]

cos [t +0(t)] = T B (a) cos (8w - no)t  (aesh)

Nn==

Reference 4 contains ten place tables of Bn(a) computed by J. Granlund.

The output spectrum of the limiter contains a component at
the desired signal frequency, the interfering signal frequency and
harmonics of the difference frequency.

Case 1

First let us consider the cage in which

cos Mt +a cos (Aw +8)t

ls present at the input but that the bandwidth of the limiter is such

as to discard all but the component at the desired frequency.
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Referring to eq.(2- 54) it is easily seen that this will

be the case when (see Fig. 2-4)

fAm - nél > Bz (2-55)

for all integers n #£ 0

The effect of the interference is that the amplitude of
the desired frequency component is reduced by a factor Bo(a) over what
it would be if there was no interference present. This effect can be
absorbed into the loop gain and the problem considered to be that of
acquisition with no interference present. The inequality (2-55) will

always be satisfied if it is satisfied for n=1,
§ - ol > B
6 - 0] >3,

which is always satisfied when

6 > 2B, (2-56)

Referring to equation (2-52) we have, when & > 2B£

2 ¥ B (=)
Mg = H 7 -1 (2-57)

To find the effect on acquisition time reference to Richman's

or Meer's results, using the effective gain Bo(a) f; should be made.

Bo(a) as a function of a is plotted in Fig. 2-5.
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Case 2

Acquisitim in the Presence of Interference with a WideBand Limiter

Again cos Aot + a cos (&b +8)t is present at the input
but now all the spectral components will be present after the

limiter.
cos (bwt + 8(t)) = zth(a) cos (&b - n§)t

where

1 a sin 6t

6 = tan 1l + a cos 6t

We may think of this signal in two ways: as a signal with spectral
components of magnitude Bn(a) corresponding to a frequency &w - né
for all integers n; or we may take the composite signal viewpbint,
that is, we may think of the signal as a single line, of constant
amplitude moving about its average value &b in the frequency domain.
Taking the composite signal viewpoint we note that the
amplitude of cos (&wt + 6(t)), the limiter output has & constant
value which has the same magnitude that a sinusoid of constant frequency
would have at the limiter output.
The first order loop equation with cos (Awt + 0(t)) at

the inpat is -

~ d -1 & sin 6t
S¢ + MK sin ¢ = s(lwt +9(t))=1&b+atan T o cos 5T (2-58)

For the first order loop with constant frequency input we hag
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-

T

e}

. A 2
sin = F-AEP 1 —p AR
« 1 . b
® 5 if by 7> 1 (2-59)
or
TO .
sin ¢ = Ao
Averaging equation (2-58) over T, when &b << § also yields
TO
. . H 1
sin = o = 35, (2-60)
since
21
T = (2-61)
(o] \/(A(D)2 _ IP
Thus when
21 _
My << 6, T >>T=T6 (2-62)
and To
T T T5 T
l e o l 6 ° l °© A
T J 6(t) dt = & f e(t) at + = f 6(t) at  (2-63)
o O o O o [?o
- |T
T
5 )

But the first integral is exactly zero and the second integral

is very nearly zero for T, >> TG. Thus eq. (2-60) is seen to be true.

Therefore, the de voltage on the VCO in the asynchronous mode

for the first order loop with time varying frequency is determined by

&b which is the average value of the input frequency.
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Now following Meer's argument, for large values of frequency
error the second order loop acts like a first order loop. Thus the

dc voltage on the VCO is,

sin ¢ = 5%3

and since the loop filter is very narrow band

G,(S) sin @ = G,(8) sin ¢ (2-64)

and the argument proceeds as before in eqgs. (2-47) through (2-52).
Since the composite signal amplitude is the same as the

limiter output amplitude that s single sine wave of constant frequency

would have, and since for large frequency errors the loop trys to

acquire the average frequency, the pull-in limit is

-1 (2-65)

where in this case Amp represents the maximum average frequency that
the loop will begin to acquire. The acquisition time is the same as
if no interference were present.

The physical picture of the acquisition process is as follows.
The large frequency error produces a de voltage on the VCO, the VCO
responds by ihcreasing its frequency which when mixed with the input
spectrum shifts it toward zero frequency. The frequency error; wi(t),

decreases. Méef has shown that as long as

1.8 13n < wi(t)
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@, (t) is slowly changing. As long as this situation is satisfied, the
whole spectrum is being slowly shifted toward zero frequency. (see
Fig. 2-6).

Before this process can be completed with the acquisition of
the average frequency a component at one of the harmonics of the
difference frequency will be shifted into the passband of the filter
and will be acquired.

If the desired component is the first frequency component
shifted into the filter passband, the loop will acquire the desired

frequency. This occurs when (see Fig.2-7 ).

[ - & > 2x B (2-66)

and

,Aw] < §

otherwise a harmonic of Aw plus the difference frequency may be acquired.
But conditions (2-66) are always satisfied when {2-63) is satisfied,
that is when we can make the approximation
T
o}

sin ¢ = 5%;
o}

when interference is present.
When a frequency component has been acquired, that is
wv = > there is still a voltage on the VCO due to all the compo-
(610) comp.
nents outside the noise bandwidth of the filter. This voltage causes
the VCO to change its frequency which shifts the component out of phase

lock. The phase error generates a voltage which tends to shift the
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component back into phase lock. As the phase error is reduced by this
restoring voltage the other frequency components again generste a
voltage which tends to shift the component back out of lock, etc.

The interference then causes a fluctuation in the phase error, never
allowing it to go to zero.

We have considered the acquisition problem for two limiting
cases of the limiter bandwidth. The first case was very narrow band,
so that only the desired component of the limiter spectrum was allowed
to enter the feedback loop. In the second case, the entire limiter
spectrum was allowed to enter the feedback loop. These two situations
had the common property that the input waveform could be represented
by a cosine of constant amplitude and a time varying frequency. For
all limiter bandwidths which pass more than one component but not all
of them, the signal into the feedback loop must be represehtéd in the

form of a cosine with time varying amplitude and frequency.
A(t) cos Gl(t)

If we rederive our differential equation using a sinusoidal

input with time varying amplitude and frequency we obtain

Sg + H(S) A(t) sin § = 8 el(t)

We can no longer reduce the phase detector output for the
first order loop to that ofbthe constant frequency sinusoid since the

phase detector output contains the amplitude fluctuations.
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For Case 2, we have found that the PLL attempts to acguire

the average frequency of cos (Mt + 6(t)) provided A&w + 6(t) is less
than Awp, the pull in range (2-65). This process continues until &
component of the spectrum is shifted into the passband of the lowpass
filter, ?;'E(s).
Further, we found that when |M| << 8, the relations of
Meer for pull-in range and acquisition time are still valid.
Acquisition when interference is present does not imply that
the output phase error is zero however. In section 2.2 it was
demonstrated that the output phase fluctuates periodically about § = 0

and in this section a physical description of the process was given.

2.4 Phase Plane Solutions to the Second Order Phase Lock Loops
with Interference

As we have seen in preceeding sections the analysis of the
second order PLL with or without interference is mathematically
difficult. The nonlinear differential equation can only be solved when
special simplifying assumptions are made. The use of graphical
techniques, however, can be made to yield graphical solutions to the
exact differential equation in the case of no interference. Viterbi,5
has presented phase plane solutions for the second order loop with
constant and linearly varying frequency inputs.

For the case of single carrier interference, or for any other
frequency inpuf, we have two paths open to us. We can resolve the
differential equation for the specific desired input frequency, or we

can approximate the input frequency with a piecewise linear approximation
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and utilize Viterbi's results. For the case of single carrier interference,
we have found it convenient to use the second approach.

In this section, we use a pilecewise linear approximation
to the input frequency for the case of a desired signal with no modulation
at a frequency @, and an interfering signal with no modulation separated
in frequency by an amount § and with relative amplitude a. With this
piecewise linear approximation we use the phase plane solutions to
the second-order loop with no interference to obtain the output frequency
error,

For large peak-to-peak variations in the input frequency,
expressions for the average change in frequency and for the peak-to-
peak variation in frequency are found as a function of a, the relative
amplitude.

Figures 2—8 to 2-12show plots of the instantaneous frequency
input for values of a = .9, .8, .7, .6, .5 with 8 as a parameter for
thé case of single carrier interference of relative magnitude, a,
and frequency separation from the desired signal, §.

For large values of &, we can apprax imate the input frequency
by a rectangular wave having the same positive and negative peaks and
the same average value as the exact instantaneous frequency. The
apprax imation for a = .9 is shown in Fig, 2-12.

Viterbi has presented the phase plane solutions for several
types of loop filters for bofh constant and linearly varying frequency
inputs. The differential equation for the PLL with no interference and

with constant frequency input is




 +KF(S) sin ¢ = q | (2-67)
Where
$ is the phase error
K is the loop gain
F(S) is the loop filter
Q is the initial frequency error.

For the second order Lloop

"1
F(8) =1 + 5

With this substitution, eq. (2~ 67) becomes

s%¢ + (K8 + 1K) sin § =5 0 - (268)

. .2 _
letting K = @ and K = 2p ®

whére > in servo terminology,
a)n is the undamped natural frequency
P is the damping factor
of the linearized servo loop.
With these substitutions and without operational notation,

eq. (2-68) becomes

2
9—-@+2pw cos¢gg+a)2sin¢=0 (2-69)
2 n dt n
dat
. X oo g _4df 1 4
Normalizing the time t = % oy and defining @ = ar = 2p & 3t °

we get
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. . 1 i
¢+¢cos¢+—'§ sin ¢ = 0 _ (2‘70)
Lo
Now for purposes of plotting, let ¢ = X, ¢ =y then y = x and ¢ = y
Equation (2-70) then becomes

£r+ycosx+m=0 (2-71)

1®
Viterbi has presented the trajectories, that is the locus
of points of (x, y) i.e., of (§ @), as the system relaxes from a

large initial phase and frequency error (¢o, éﬁo) to its steady state

condition of phase lock (¢f = 0, éff =0), for several values of p.

Figure2-13 was taken from Viterbi.5

Consider the case of the secand order loop initially tracking
the desired frequency, @ and at time to the interference
a cos (a)o +68)t appeé.rs at the input to the loop. We pose the question
what happens to the phase and frequency errors.

The input frequency is of the type shown in Fig.2-13. 1In

general, the positive peak, C+, is —la—_l_ég > the negative peak, C_, is

8. Let us also define the duration of the positive and negative

L -a
peaks as T+ and T respectively. Then T+ +T =T = %—ﬂ > then for time

t<t ., (6, #) = (0, 0). At t = t_ the frequency error jumps from O
a : .
to T+5 8- For time to <t < to + T+ the system relaxes along the

- 25y, at

trajectory determined by the new initial conditions (0, v
t = (to + T+)- the coordinates of the system are (@ (to + T+),

t+T.))att = (t +7)" the frequency error instantaneously drops
0 + ) +

. Z . - 2abd X
from @ [(to + T+)] to ¢ [(to + 'I'+) ]- I.—aé . The system coordinates
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+
at (to + T+) . At t = t, * T, + T another frequency jump of

magnitude occurs with the phase remaining constant. Continuing

1 +a

in this fashion the output phase and frequency error can be determined.
In most cases this is a tedious task since given the initial

coordinates (xl, yl) and the phase plane trajectory at time t, it is

not obvious which coordinates (x2, y2) on the trajectory the system

is at on some later time, t2, since time is not explicitly indicated

on the phase plane. A few methods for determining this are given in

Truxal6. The most straightforward method is a graphical integration of

T
a2
-1-2 - Tl = :;- ar (2-72)
1
with _ o _Gx
y =X =57
| dr = dx
y
Therefore
X
a2
1
,T2 - Ty = 'J ;dx (2‘73)
X1

To = Tys Xq and the trajectory y(x) are known. X, and ¥, are found
by finding the point (xe, y2) on the curve % at which the area under

L between Xy and Xy equals T

y 2" 71t

This method is illustrated later.
If the positive and negative Jumps of the piecewise linear
input carry the frequency error outside the phase acquisition region

(the region between the two lines A - A in Fig.2-13, the phase
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trajectory is almost periodic. This corresponds to the discussion
in section 2.3 where An is large and (t) is periodic. For large
frequency errors, ¥, the periodic approximation is a good one. 1In
this situation the phase error increases linearly with time and the
graphical integration can be avoided. This is easily seen from the

differential equation. Rewriting eq. (2-71)

¥ = %ﬁ = - cos x 512 X (2-74)
x Loy
for y > 1 this becomes
%% = - cos X
'y ==-8sinx + ¢ (2-75)
also
_dx
Y =&
arT =d—X= dx
y c - sin x
t X
J £ J £ dx
at = -
% ¢ ~ sin x
X
o ' o)

From Dwight Integral 436:00 (reference 7),
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Tdn_tf—to= 22 ta,nl ctang—- l_ 22 tanl cta;ne-g—o- 1
e -1 Vet - 1 1/c -1 Pl -1
For y>> 1; '\kT:T = e ~ <1
Then -
Xf =¢ Tdn ¥ Xo (2" 76)

Equation (2-76) is valid in the time interval from by boty =t + 7T,

a
a = = —§ g a i t + i
nd c c, T+ & nd the phase increases from x, to X, c, T+ in

the time interval from t. to t_ = t +T +T . ¢cZx¢ = - ad and
1 2 (o) + - - l-a

t e " + + + .
he phase "increases" from X, c, T+ to X c, T+ c_ T_ The net

increase in phase ig c, 'I'+ +c_T_. But this is zero since it is

the condition for the average frequency to be wo. Therefore the net

change in phase over a period is zero and hence the output is approximately
periodic with frequency §.

The average frequency over a period is then

t t
1 : 2
CD+-]-'f ¢, - sin(e,t - ¢ .t +x)dt+}-f ¢ -sin(ct-ct +x +c T Mt
o Tt + + +0 o T:G - - -1 o ++
o] 1

This expression can be simplified to

+
O+ e [cos (xo + c+T+) - cos Xo:' (2-77)
Therefore, the phase lock loop shifts the average frequency by an amount

c =2c

- +
Ar —m [COS (Xo +C+T+) - CO8 Xo]
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Let us keep a constant and see how AT varies with 8 under the constraints

_ _2n
c+T+ +c¢T =0 and T+ +T = e
"y : a
Writing c, and c_ in terms of a and § we have, c = T35 0 and
=
= 8
c- l - a LJ

Substituting for c, and ¢_ in the constraint equations and

solving for T+ and T_ yields

T = gl + a}n and T = ngl - ag

+ 6 - 6 ’

Then, substituting for T, T, C,» ¢_ In the expression for Af gives

c =2c

AF = — -
f O [%os (xo + c+T+) cos.xo}

- L -
= = [cos (xo + an) - cos xq]

= == [%os X, (cos ax - 1) - sin x, sin an:]
If the loop was in phase lock initially X, = O and therefore

AT -,:—ﬂ (cos ax - 1) (2-78)

The peak-to-peak fluctuation as a function of a, neglecting the effect

of the sinusoidal fluctuation is
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peak-to-peak fluctuation = 28 5 0 + sin ax a< %
l-a

= 28 5 6 +1 a > %
l-a

AT as a function of & and the peak-to-peak fluctuations of

the input and output as a function of a are presented in Figs.2-15 and

2-16.
As a increases both the integrals
an 0
AF=El—_J -sindx+if -sin x dx
+ 0 c. an
2

increase as a“.
The weighting factors decrease as %, the net result being
that AT increases as a for small a.
| After & reaches the value % the integral begin to increase

much more slowly. Similarly é& approaches its minimum value of 2.

However, éL continues to grow smaller and smaller overtaking the

growth of ;he second integral and eventually swamping it out. At

a = .75 the tradeoff between increasing integrals and decreasing

weighting factors results in a maximum product of about AFf = .72,
Looking at the physical process, the fluctuation superimposed

on the input frequency by thé PLL occurs because, when the system is

displaced from phase lock a large frequency error exists. This results

in a linearly increasing phase error. The sinusoidal phase detector
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reacts to this linearly increasing phase error by transforming it into
a sinusoidal fluctuation. This fluctuation is fed into the VCO and
results in a sinusoidal fluctuation being imposed on the VCO frequency.
This sinusoidal fluctuation is transferred to the output frequency by
the mixer.

When & is small the frequency error applied to the phase
detector is small, the phase error increases slowly and not much of
a fluctuation is transferred to the output frequency. As & increases
more of a phase error ié accumulated and therefore a larger portion of
the period of a sine wave is imposed on the output frequency. As
& - 1, the phase error accumulated by a positive frequency peak of
an input fluctuation that has zero average value is w. When a is
small the contributions from the positive and negative peaks add.
However, as & increases the finite contribution from the negative
peak is swamped out because its time duration qQuickly approaches zero
as'a — 1. Somewhere between the sum of the two contributions is a
maximum,

If we continue to think about the PLL in the same manner it
is easy to see that as a increases the peak-to-peak fluctuation in
frequency will continue to increase until the phase error accumulated
is g, at which point the phase detector is putting out its maximum
voltage and the fluctuation imposed on the input frequency has reached
its maximum value. As a incfeases beyond this point the difference
between the peak-to-peak fluctuation of the input and output maintains

a constant value.
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We have just examined the frequency error for the case of )
a rectangular frequency input that had an average value equal to
the desired signal frequency. For the special case of large peak-
to-peak fluctuations we found the average change in frequency and the
peak-to-peak fluctuation caused by the PLL as a function of a, the
relative amplitude of the interference to the desired frequency. ILet
us now actually obtain a plot of the output phase fluctuations for
a specific periodic rectangular frequency input.

If we assume that the positive and negative input frequency
fluctuations carry the frequency error outside the phase acquisition

region we can ignore the second term in the differential equation

sin x

= = CO0S X =-
5
o™ y

(2-79)

gle

which describes the second order loop with constant frequency input.

The solution to (2-79) under this assumption is given by

y=-8inx +c (2'80)

Xp=cT, +x (2-81)

For the positive pulse we have

(e}
I
-
o}
+
5}
vk
ja]
el




For the negative pulse

c_ = yl + sin Xy
x2 =c_ Td- + Xl
Yo =c_ - sin X,

By repeating application of these equations a plot of
output frequency error as a function of time is found. This was
carried out and the resulting plot of output frequency error is
given by Fig. 2-18 for the specific input of Fig. 2-17.

Referring to Fig. 2-18 we first note that the peak-to-peak
fluctuation over a cycle increased by two normalized frequency units.
For eny ¢, and c¢_, the peak-to-peak fluctuation will increase but it
will not always be by 2 units over a cycle. Two is the maximum. The
peak-to-peak fluctuation over several cycles will always increase by
two if c, and ¢_ are such that they carry the frequency out of the
phase acquisition region.

Let us examine the average positive peak over T+. We have

y =c, - sin (c+t + xo)
- 1 J'T"'
Vy=c, tF - sin (c+t + xo)dt
+ Q
xo + c¥P+
Y. =c, + 1 cos x
+ + c+T+
x
o
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c;T+ is the same for every positive peak. In our case c+T+ is

rad
norm. sec.

5.67

For the nEl—1 cycle the initial phase is

Xo,n = n(c+T+ +cT ) n>1

if
4 2n + n(c;I+ +cT)=(n+ m)(c+'I'+ +c T )

where n, m, {4 are positive integers then the xo's repeat after m cycles

and the output is periodic. The condition restated is

m(c+T+ +cT ) =+4 2n

or,
=2
(c+T+ +cT) = = 2n (2-82)

The average positive peak over T+ is

- 1

= - 2=

y,=c, * ST, (cos (x, +¢I,) - cos x_) (2-83)

where X, takes on values
X, = n(c+T+ +c T )- g2

n, £ integer
It has a finite number of values if (2-82) holds, otherwise it can

take on an infinite number of values.
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Maximizing §+ with respect to X, yields

1 . . _
=7 l:- sin (xo + c+T+) + sin x(;, =0
+ 4
which results in
-1 sin c+T+
X, = tan " — w5 o T, + nn (2-84)

The maximum average (over T+) positive peak is then

1 . .
Y.l =c, +- T (cos xo(cos ¢, T, - 1) - sin x, sin c_i_T_!_)

max

which reduces to

- N2 1/2
Y, =c,t %% (1 - cos c+T+) (2-85)
+ +
max
The exact same expression holds for -37_ if ¢ - and T 4 are replaced by
c_and T respectively. max

The value of 5 averaged over a positive part of the cycle
depends on the initial value of the phase x . It takes on its maximum
average value when x_ has the value specified by eq. (2- 84). This
maximum value is given by (2-85).

If we average the positive peak over several cycles, we find

_ \: . IXO’N+C+T+
y+=c++z —5 (-sin x) ax
++ x
=0 o,n
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- 4
where Xon = n(c+T+ teT)=nc

IT

Bl

(c+T+ +c T ) # 2x (2, m integer)

then the sequence of X n's is not periodic.
>

Since there is apparently nothing to favor positive wvalues
of the integral over negative values, it seems reasonable to assume

that the sum averages to zero.

Note: Xo does not take on all values between zero and 2x

since this would imply that
X, =he - £ 2x

T+ xo =me - g 2xn

m=(m-n)- (p- 4) ox

the sequence of xo's was periodic of period 2(m - n). This removes a

countable infinity of points from the set of possible values for Xy

Formulated more precisely

‘ + +
and
: Axo,n + c+T+
. ZJ J -sinx dx =0
n=0 xo,n
if
lim
M, o
M L 0
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where

yn=lifx<nc-£2rc<x+Ax
= 0 otherwise
zn=lifx+n<nc-£2n<x+Ax+n

0 otherwise

and
M M
Nl =Z ¥, and N2 =Z z
0 0
and
I\Il
R = T £ and positive integer
2

The average frequency of the output over a complete cycle

of the input is

T . - . . nxo+c+T+
TJ‘ ydt=-,i,-~;c+T++c— J - sin x dx
! +
0 he X
O .
L hxo + c+T+ + c_T_ ‘
+ ¢ T +_.J - sin x dx
- . c-
X +c+T+
¢c,T, +c¢ T Cos X
+ + -- 1,1 1 (]
= T +T(c_+-z) cos (x, +c,T,) - c T

cos (xo +e T +cT)
c T

+

The first term represents the average frequency of the input, the
others represent the effect of the PLL on the average frequency.
As in the previous discussion the average frequency over a

cycle depends on the value of X,
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)

If the X, n's are periodic, the average value over several
J

cycles depends on the periodicity.

If the X, n's are not periodic we argued that it is reasonable
2

to assume that

- N Xo,n + c;T+
lim < L f - sin x dx
V- o ZJ c, T
n=0 X
o,n
N nxo,n + c+T+ +tec T
+ J - s8in x dx
c_ T
o,n * d+T+
-0

c T+ + c_T_

and therefore that the average over several cycles is T T
+ -

which is the average frequency of the input.

In the two preceding discussions we discussed the reaction of
the PLL to inputs whose.frequency excursions carried the loop out of
the phase acquisition region which allowed us to neglect a term in the
differential equation. We now compute the output phase error to a
rectangular frequency input whose average value is non-zero and whose
positive excursions in frequency carry the loop outside the phase
acquisition region but whose negative excursions do not.

The purpose of this discussim is to illustrate the use of the
phase plane plot in computing out put phase errors and to find the

shape of the output pulse for a particular input frequency. The
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instantaneous frequency of the input is chosen to be as illustrated
in Fig. 2-19. It is normalized for a loop with high frequency gain
m = .0l, midband gain, K = 1, and 3 db loop bandwidth of 30 Hz and
damping factor p = .707.

The normalized input frequency plot is shown in Fig. 2-20.
This frequency input has a positive pulse of 583.09 cycles/normalized
sec and no negative pulse.

For the duration of the positive pulse we can make the
approximation that the nonlinear term in the differential equation
(eqa. 2-79), describing the loop is negligible. The solutions valid

for the duration of the positive pulse are then given by (2-80) and
(2-81)

y==-s8inx +e¢ : (2-80)
x =c((t - to) *x (2-81)

As before we use equations (2-80) and (2-81) to relate phase
and frequency errors just after the pulse appears to those just before
it passes. To find the reaction of the loop for the period just after
the pulse passes to just before the next pulse strikes we use the phase
plane plot, Fig. 2-21, and the graphical integration technique described
on page 71 .

On the following paéeS, we calculate the output phase and
frequency errors for several cycles of the input frequency of Figs.

2-19and 2-20.
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We assume the loop is initially in phase lock when the
frequency input of Fig. 2-18 is applied. Then
(xo, yo) = (0, 0), and the pulse of amplitude 583.09 strikes, then using
egs. (2- 80) ana (281),

¢ = 583.09 normalized frequency units

= +
xf c Tdn Xo

xp = (583.09)(2.2 x 1073) + ¢

1.28 radians

Ye = ¢ - sin Xp = 583.09 - .96
(Xf) yf) = (1'28) 583'09 - '96)

af'ter the pulse passes we have

X; = Xp = 1.28 radian

yl'= Yp - c=-.96

radian radian
= .0785

18 ——
then 1.28 rad at o phese unit¥® phase unit

is 16:3 phase units on the phase plane plot (see Fig.2-20 ). The
phase and frequency error (xl, yl) Just after the pulse has passed
are known.

The system will now move toward the origin of the phase plane
along the trajectory passing through (xl, yl) until it is disturbed by
the pulse T - Td = .1 sec later. The system coordinates at the time
the pulse strikes for the second time can be determined from a graphical

integration of

A phase unit is the smallest division on the phase plane plot
(see Fig.2-20).
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This is carried out in Fig. 2-21 on which it is seen that
the phase error decreases by 1.22 phase units and the frequency

error does not change a significant amount. Therefore,

(x2’ yg) = (1'18) -.96)

Since

_ radian .
.y2 = (16.3 - 1.22)(.0785 BHEEE'EHIE) - 1.18 radian

As the pulse strikes for the second time

(x55 v,) = (x., v,)

(1.18, -.96) - (1.18, 583.09, -.96)

The new c is

c =y, +sin x, = 583.09 -.% +.96 = 583.09

then

Xp=cTy +x = (583.09) 2.2 x 1073 + 1.18 = 27h6 radians

and

Yp =¢ - sinx, = 583.09 - .63

After the pulse passes the new system coordinates, (xl, yl), are
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(xl, yl) = (2.46 radians = 31.34 phase unit, -.63)

pbroceeding exactly as before using Fig.2-22 we get

2.39 radians
(x5, ¥,) = or -.75
30.45 phase units

The pulse strikes for the third time changing

(x5 ¥,) to (2.39, 5.83.09 -.75)
The new c is
¢ =y, t sin X, = 5.83.09 -.75 +.68 = 583.02

then

»
Il

(583.02) 2.2 x 1073 + 2.39

3.67 rad

= 3.67 - n .53

Yp = - sinx, = 583.02 - .51 = 582.51

after the pulse has passed

(le yl) = ('53 + n, -'58)

Performing the graphical integration, Fig.2-23 yields

(x5 ¥5) = (x + .07, -.59)

- 87 -




The pulse strikes for the fourth time changing
(x5 ¥5) to (x +.471, 583.09 - .50)

(xgs ¥,) = (x + .471, 582.5)

The new ¢ is

c =y, +sin X = 582.5 - .45
¢ = 582,05
Then
xp = (582.05) 2.2 x 1073 4+ 1 4 A7l

T+ 1,75 = %; + .179

Yp =c =sinx, = 582.05 + .98 = 583.03

(xps ¥p) = (& + .179, 583.03)

after the pulse passes the coordinates are
= (3%
(xl) yl) = (2 + '179) = ‘06)
The graphical integration is performed in Fig. 2-24 to yield

(x5 ¥,) = (&2 + 157, « .06)

The pulse strikes for the fifth time changing (x5 ¥,) to (x_, v,)

(x> ¥,) = (3 + .157, 583.03)
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The new c is

c =y,  +sin x, = 583.03 - .99 = 582,04

582.04 (2.2 x 10'3) + % + .157

el
n

3
-'2— + l.)-i-)-l-

Vg =¢ - sinx, = 582.0k + .13 = 582.17
After the pulse passes we are left with
- 7t
(e yp) = (& + 1, - .2)
From Fig. 2-25
7t
(0 ¥,) + (& + 135, - .81)
The pulse strikes for the sixth time changing (xg, y2) into (xo, yo)

(x, v.) = (32E + 1.35, 582.28)
" The new ¢ is

¢ =y, +sin X, = 582.28 - .22 = 582.06

e
h

582.06 (2.2 x 10‘3) + 3’25 + 1.35 = 2n + 1.06
Yp = ¢ - sin x, = 581.19
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As the pulse passes the system coordinates become

(5 ¥,) = (.87, - 1.90)

The resulting output frequency error is plotted in Fig.2-26 .
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2.5 APPENDIX A

Series Solution to First Order Loop with Carrier and Interference Present .
At the Input

The differential equation is (2-9)

[o<]
. . .5 n+1ln
¥ + K lsin ¢o + (cos ¢O)¢] =8 Z (-1) a" cos nét +w - @,

n=1
(2-9)
Assume a solution of the form(2-10)
=]
Vo= Z A cos (nét + an) (2-10)
n=1
Then
o]
¥ = - Z A nd sin (nSt + an) (a-1)
1
Therefore (2-9) becomes
—Z A nd sin (nét + ) +Ksing +0 -
n n o o
n
[+9] =]
o / < n+1l n
+ X cos ¢o ZJ An ¢os (nét + Q’n) =6 L (-1) a  cos nét (A-2)
n=1 n=1
Immediately we obtain
‘ K sin ¢O+a>0-a>=0 (A-3)
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o1 je-a 4
¢o = sin { = } (A-L)

Expanding sin (nét + an) and cos (nét + an) and collecting terms in

(A-2) yields

(-A_né sin nét cos @ - A nd sin Q@ cos ndt + K cos § A cos n§t cos @
n n n n °o'n n

—=>1 8

. . : _ 1yt +1 n -
+ A K cos ¢o sin n§t sin an) =) 6(-1) a” cos nét  (A-5)
1

Equating the coefficient of sin nét to zero and equating the coefficients

of the cos nét terms gives

-A nd cos @ - A K cos ¢ sina =0 (A-6)
n n n o) n

. _ n+1l n
-A_ n§ sin @ +K cos ¢o A, cos ¢ =5(-1) a (A-7)

Equation (A-6) gives

-1 -nd
an = tan m;— (A'8)

Equation (A-7) gives

5(__l)n + 1 a0

- i + cos Q
n n§ sin o +K cos ¢o A

n n+1
da” (-1) : (A-9)
cos o [K cos ¢o - nd tan a;j
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But from equation (A-8)

-né..

tan czn = R_E.O—S_@; (A-lO)

Therefore

K cos ¢o

cos @ =
‘\/(n&)2 + K cos® ¢o

(A-11)

Substituting (A-10) and (A-11) into (A-9) and simplifying gives

) (_l)n +1 sa )
"n '\/(nﬁ )2 + (K cos ¢o)2 (a-12)
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2.6 APPENDIX B

Series Solution to the Second Order Loop with Carrier and Interference
Present at the Input

The differential equation is(2- 27),

;3+K§3+KT¢=.é (2- 27)

In which 6 is given by (2- 28).

62 (-1)" n a® sin nst (2- 28)

HI>~18

Assume a solution of the form (2-29).

©

g = ¢0 + Z A sin (nét + ) (2-29)
1

Then we have

éj.: Z 'An nd cos (nét +an) (B-1)
1

@ = Z- A (n6)2 sin (nét + an) (B-2)
1

Substituting (2-28), (2-29), (B-1), and (B-2) in (2-27) yields
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<]

2 . -
- An (n§)° sin (nét +ozn) +Z.. KA n§ cos (nét +Ocn)

=01 8

1
o] © )
+KT ¢0 +Z Kr An sin (nét + an) =Z 52n (-]_)n a sin nét (B-3)
1 1

Expanding sin (nét + an) and cos(ndt + an) gives

2 2

- (4] i - o
An(n )" sin nét cos @, An(né) cos nbt sin ¢ +KT ¢o
- KA nb sin nét sino_ + XK A n§ cos ndt cos &
n n n n

+KTA sinndt cosa +KTA cos nbt sin o

n " “n n n

= 62 (-1)" n a” sin nét (B-4)

Combining terms and equating coefficients of sin ngt and cos ngt

equal to zero gives

g, =0 (B-5)
2 . _ n .2 n
- A (n6)< cos @ -KA nd sin % +K71A cos o = (-1)" 6“ na
(B-6)
2 . _ l
A (n8)< sin % +KA né cos @, +KTA sin @ =0 (B-7)
From (B-7) we have
- 6
& = tan 1 5 K2n (B-8)
n : n- 86 -KT
2 .2
n 6" - K-
cos O = (B-9)
n 'V n262+(n262-K'r§2
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From (B-6)

o me .
*n T (KT_(Eisl)—éé - — (B-10)

-Knétana ) cos
n n

Substituting (B-8) and (B-9) in (B-10) gives

A - (l)n+l 6211 Jl)n'*'l 5 a

n [(Kné) + (n° 52 X 1) Jlf V(nK)2 "‘Tg-‘f—;é (B-11)
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SPIKES ARE SHOWN LASTING 9 TIMES
AS LONG AS THEY ACTUALLY DO.

582
Output Frequency Rrror for
Input of Figs. 2-19 and 2-20
58/ Fig. 2-27
580}
L
T
U —
8 352
2 —T ==T7
360 ' 360
N
b
(o] -
T 2T 37 ’ aT 5T sT
——f— | 1f ”
-1} { —
-2 S

- 118 -



